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1. INTRODUCTION

Several techniques have been applied to the study of low-pressure flames (Penner, Wang, and

Bahadori 1984; Limbaugh 1985). One of the least used is Fourier transform infrared spectroscopy (FT[R),

even though a major advantage of using FrIR spectroscopy is that the technique is non-perturbing to the

system under investigation (Thome and Melius 1990). However, drawbacks inherent to FTIR experiments

on combusting systems such as line-of-sight limitations (McNesby and Fifer 1991), lack of sensitivity,

difficulty in quantifying species and temperature (Anderson and Griffiths 1977), detector nonlinearity

(Solomon et al. 1986), and limitations imposed by spectrometer resolution and apodization (Anderson and

Griffiths 1975) (if any) have discouraged many investigators. It is not surprising that mass spectrometry,

even though it is an intrusive technique, has become a more widely used tool for flame diagnostics

(Howard et al. 1992).

The most ubiquitous of the limitations for FTIR transmission spectroscopy of flames is that it is a line-

of-sight technique. Recently, Best et al. (1991) published a paper reporting the first use of tomography

coupled with FTIR spectroscopy for reconstruction of localized spectra of an axisymmetric flame from

line-of-sight absorption measurements. Previously, nonmedical applications of computed tomography

have been mainly single wavelength studies in emission and absorption of reacting flows (Emmerman

et al. 1980; Best et ai. 1991; Hughey and Santavicca 1982).

Although the body of literature on the subject is extensive (Barrett and Swindell 1981; Cormack 1963;

Dasch 1992; Penner, Wang, and Bahadori 1984; Limbaugh 1985), tomographic analysis has not become

a standard analytical tool in chemistry. In this report, we recount our own efforts at applying tomographic

analysis to line-of-sight spectra of low-pressure flames. This work is an extension of our initial efforts

reported previously at tomographic reconstruction of FTIR flame spectra (McNesby and Fifer 1992).

2. BACKGROUND

Computed tomography allows the reconstruction of a three-dimensional image of an object by the

stacking of two-dimensional "slices" of that object (Shepp and Logan 1974). In computed tomography,

obtaining the "slices" is accomplished by computer manipulation of a series of sets of evenly spaced

parallel projections through an object. Each set of parallel projections is taken from a different angle or

view of the object. When the object is axisymmetric, only one set of parallel projectiun uata is necessary.
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Reconstruction of the image of an axisymmetric object from a single set of parallel projections may

be accomplished algebraically (the "onion peel" method) using Fourier transforms or by using Abel's

equations (Hughey and Santavicca 1982). In the work reported here, Abel's equations are used to analyze

FMIR transmission spectra (the raw data input to the reconstruction program are absorbance data) of low-

pressure burner flames.

The line-of-sight absorbance at a given frequency for a single absorbing species through an optically

thin, axisymmetric medium may be given by

g(x) - 2fx' f(r)rdr / (r 2 - x 2 )1/2  (1)

where g(x) is the line-of-sight absorbance (projection) through the medium at lateral position x and f(r)

is the product of the absorption coefficient times the pressure at radial position r within the axisymmetric

medium (Hughey and Santavicca 1982) (see Figure 1). If more than one species absorbed, then f(r) would

be a sum of absorption coefficients times pressure. Equation I may be solved for f(r) using the Abel

transformation

f(r) - -l/nfrf 1g(x)dx / (x 2 - r2)1/2

where g'(x) denotes the derivative with respect to x of the function g(x). In general, the greaier the

number of projections, or, in other words, the more parallel line-of-sight spectra obtained, the better the

reconstruction (although oversampling may increase error (Dasch [ 19921). However, errors in original data

tend to be amplified by the transformation process (Hughey and Santavicca 1982), and reconstruction of

regions of abrupt change such as at the edge of a flame where large temperature, species, and density

gradients occur may be inaccurate (Hughey and Santavicca 1982). Several investigators have tried to

determine the best method of overcoming these limitations (Hughey and Santavicca 1982; Dasch 1992).

The general method of solution when Abel's equations are used is to divide the data g(x) into

segments and then to fit each of these segments to a polynomial for which an analytical solution to

Equation 2 may be obtained (Hughey and Santavicca 1982; Dasch 1992). The process of fitting the data

to a function is equivalent to smoothing the data. Smoothing is usually necessary to minimize the noise

amplification in the reconstruction mentioned above. Such smoothing or filtering is common to most

methods of reconstruction from projection data (Hughey and Santavicca 1982; Dasch 1992).
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T.\ line of sight
t / \ path

/ , g(x)
j/ (line of sight absorbance)

,r
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c rs section of flame1.1

(lateral coordinate)

Figure 1. By moving the line-of-sight Path to different values of the lateral coordinate, x, different
line-of-sight absorbances, a(x). may be obtained.

3. EXPERIMENTAL

A stoichiometric methane/nitrous oxide (CH4/N20) flame was used in all experiments reported here.

Total flow rate was 1.8 standard litres per minute. The overall chemical reaction was

CH4 + 4 N20 - C02 + 2 H20 + 4 N2

Gases were from Matheson Industries, Inc., and were used without further purification. Pressure within

the burner chamber was maintained at 17 (+/-0.2) torm. No shroud gas was used in the experiments

reported here. Once the flame had stabilized, the pressure within the chamber slowly increased as the

chamber heated up. Over the course of an experiment (several hours), the pressure within the chamber

typically rose a few hundred millitorr. The stainless steel frit upon which the flame was supported and

through which the premixed gases flowed was 70 mm in diameter. Line-of-sight spectral data were

collected for 200 scans at 8-cm-I resolution for each projection on a Mattson Polaris FTIR spectrometer.

The spectrometer and beam path external to the burner chamber were purged with dry nitrogen gas to
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eliminate absorbance from atmospheric gases. The light beam from the interferometer was directed

through a low-pressure housing which contained a McKenna Industries flat flame burner modified for

low-pressure operation. Beam size was regulated by 0.75-mm circular apertures on interferometer and Hg-

Cd-Te detector sides of the low-pressure housing. Combustion gas flow was controlled by an MKS Inc.

Model 147B flow controller. Pressure was controlled using a hand-operated valve in the exhaust line

between the vacuum chamber and the Leybold Inc. Model 100 vacuum pump. It was found that for the

experiments reported here, hand regulation of the pressure was often better than that achieved using an

exhaust line mounted butterfly valve slaved to the MKS capacitance manometer used to monitor pressure.

No correction was applied to account for beam divergence or for beam walking in any of the spectra

collected (Griffiths and de Haseth 1936). The rest of the experimental apparatus has been described in

detail in a previous report (McNesby and Fifer 1992).

Reconstruction was accomplished using a nonderivative solution to Abel's equations employing a least

squares fit of spline functions to the experimental data (Deutsch and Beniaminy 1983). For each "slice"

of the flame investigated, 20 projections were obtained on one side of the burner axis, with the first

projection taken through the burner axis. The beam through the burner flame was 1.3 mm in diameter

(95% of the radiant power of the apertured interferometer beam was contained within this diameter).

Projections were spatially separated by 2 mm (beam center to beam center). Because of space restrictions

within the burner chamber, it was not possible to obtain a complete set of spectra for each side of the

burner axis. So, prior to reconstruction, the projections through one side of the burner axis were reflected

about the burner axis. A check of parallel projections taken at equal distances from opposite sides of the

burner axis (where possible) gave spectra which were superimposable.

4. RESULTS AND DISCUSSION

The appearance of the 17-torr CH4/N20 flame used in these experiments is shown in Figure 2. Note

the curvature exhibited at the underside of the luminous region of the flame. This curvature indicates that

the flame is approaching the "blow off' point (Thorne and Smith 1988), i.e., the pressure and flow rate

combination are such that the burner frit will no longer support the flame. Also evident is a nonluminous

zone approximately 4 mm in height immediately above the burner surface. Figure 3 shows a series of

parallel line-of-sight absorbance spectra (evacuated chamber used as reference), separated by 4 mm,

through the flame shown in Figure 2, at a height above the burner (HAB) surface of 0.65 mm. The

constant CO2 absorbance (centered at 2,349 cm-l) due to "cold" gases (i.e., not within the vertical cylinder

proscribed by the burner diameter) outside the flame region is evident in each spectrum. Figure 4 shows

the tomographic reconstruction using the spectra shown in Figure 3. This figure is dominated by the

4
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asymmetric and symmetric stretches of N20 (at 2,223 cm-1 and 1,285 cm-1, respectively) and by the CH

stretch of methane (Herzberg 1950) (3,020 cm-1). This figure shows that just above the burner surface

there is a higher concentration (absorption coefficient times pressure) of methane and nitrous oxide at the

edge of the burner than at the center of the burner. The luminous portion of the flame may affect the

density of the fuel-oxidizer mixture in the nonluminous region by creating a temperature gradient within

the nonluminous zone. The curvature of the luminous zone may be responsible for the varying

concentration profile of methane and nitrous across the face of the burner at levels immediately above the

burner surface. The spike in the reconstruction around 2,360 cm-t is probably spurious and due to noise

in the line-of-sight data. The error in all reconstructions, based on reconstructions of synthetic data (round

off error used to simulate noise [Hughey and Santavicca 19821). is believed to be approximately 10%.

Figure 5 shows relative peak absorbances (at one selected frequency for each species) for N20, CH4,

CO2, CO, and NO as a function of distance from the burner center through a "slice" of the flame 0.65 mm

above the burner surface. The actual spatial resolution can be no better than the diameter of the probe

beam, in this case equal to 1.3 mm. Figures 6 through 10 show relative peak absorbances (at one selected

frequency for each species) for N20, CH4 , CO2, CO, and NO, respectively, at HAB surface from 0.65 mm

to 13.05 mm as a function of distance from the burner center. The contour at the top of each figure is

due to absorbance nearest the burner surface. Figures 9 and 10 show that for this flame, the region of

highest CO and NO concentration, respectively, occurs approximately 3 mm above the burner surface in

the nonluminous region of the flame. These results are in agreement with recently reported results on

CH4/N20 low-pressure flames obtained using mass spectrometry (Vandooren, Branch, and Van Tiggelen

1992), although the peak in NO concentration followed by a decrease in the burned gas region has not

been reported previously.

Obtaining absolute species concentrations requires knowledge of local temperatures and the

dependence of the absorption coefficient for each species upon temperature (Ouyang and Varghese 1990).

Work is presently being performed in which tomographic reconstruction of infrared diode laser spectra

of CO will be used to obtain local temperatures.

5. CONCLUSION

We have shown that tomographic reconstruction using line-of-sight transmission spectra of low-

pressure flames can be of use in evaluating the chemistry occurring within low pressure flames. At
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present the technique is labor intensive, but with improved optics and array detectors, and improved

signal-to-noise ratio, the technique may become routine. We are presently working on obtaining

quantitative results by extending the technique to infrared diode laser spectroscopy, and using the

information obtained as a calibration for tomographic reconstruction using FTIR line-of-sight spectra.
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